The fate of the α -vacuum

Hael Collins Carnegie Mellon University

in collaboration with Rich Holman & Matt Martin

hep-th/0306028, hep-ph/0309265, hep-th/0311nnn

The de Sitter Days Workshop, Fermilab Saturday, November 15, 2003

Overview

• The vacua of de Sitter space

• The linear divergences of an interacting theory in an α -vacuum

• Taming the divergences of the α -vacuum

• Truncated α -vacua and the CMB (next talk)

The geometry of de Sitter space

- The cosmological importance of de Sitter space challenges us to understand properly quantum field theory in a de Sitter background
- no global time-like Killing vector
- Conformally flat coordinates:

$$ds^2 = \frac{d\eta^2 - d\vec{x} \cdot d\vec{x}}{\eta^2}$$

What are the de Sitter invariant vacua?

The vacua of de Sitter space

- One vacuum of de Sitter space has special properties:
- thermal,
- becomes the flat vacuum at short distances, ...

Consider a free scalar field:

$$\Phi(\eta, \vec{x}) = \int \frac{d^{3}\vec{k}}{(2\pi)^{3}} \left[U_{k}^{E}(\eta) e^{i\vec{k}\cdot\vec{x}} a_{\vec{k}}^{E} + U_{k}^{E*}(\eta) e^{-i\vec{k}\cdot\vec{x}} a_{\vec{k}}^{E\dagger} \right]$$

defines the vacuum: $a_{\vec{k}}^E |E\rangle = 0$ $U_k^E(\eta) = \frac{\sqrt{\pi}}{2} \eta^{3/2} H_v^{(2)}(k\eta)$

$$U_k^E(\eta) = \frac{\sqrt{\pi}}{2} \eta^{3/2} H_v^{(2)}(k\eta)$$

The α -vacuum

Mottola, PRD 31, 754 (1985) Allen, PRD 32, 3136 (1985)

$$(a_{\vec{k}}^{\alpha}) = N_{\alpha} \left[a_{\vec{k}}^{E} - e^{\alpha^*} a_{-\vec{k}}^{E\dagger} \right]$$

$$N_{\alpha} = \left(1 - e^{\alpha + \alpha^*} \right)^{-1/2}$$
defines a new vacuum: $a_{\vec{k}}^{\alpha} |\alpha\rangle = 0$

$$\operatorname{Re} \alpha < 0$$

UV divergences of an interacting theory in the α -vacuum

Trouble with the α -vacua?

Perturbation theory in the α -vacua:

 Einhorn and Larsen found pinched singularities at oneloop order

hep-th/0209159

• Banks and Mannelli showed the α -vacua need non-local counterterms

hep-th/0209113

Variants of the α -vacua can be renormalized:

- Place sources at x and x_A
 - Goldstein and Lowehep-th/0302050, hep-th/0308135
 - Einhorn and Larsen

hep-th/0305056

The approach:

- First study the original αvacuum propagators
- Examine the variants later

$$G_{\alpha}^{F}(x,x') \propto \frac{1}{Z-1-i\varepsilon} + \frac{e^{\alpha+\alpha^{*}}}{Z-1+i\varepsilon} - \frac{e^{\alpha}}{Z+1-i\varepsilon} - \frac{e^{\alpha^{*}}}{Z+1+i\varepsilon}$$
de Sitter invariant distance

- Evolve matrix elements
 - do not ask S-matrix questions
 - Suppose that the system is in an α-vacuum at η0 and evolve forward

The fate of the α-vacuum in an interacting theory

- When we evolve the quantum theory with interactions,
 - we discover a linear divergence in the one-loop corrections
 - which cannot be cancelled by a mass counterterm
- We use a quantization formalism in which the pinch singularities do not appear
 - cf. pinch singularities in thermal field theory
- As a check we find that the theory is renormalizable when
 - $-\alpha$ → $-\infty$ (Euclidean vacuum) with interaction, or
 - $-\alpha$ ≠ $-\infty$ but with no interactions

The Schwinger-Keldysh formalism

 As the background is time-dependent, it is dangerous to ask about the asymptotic states

- We use a quantization procedure that allows a time-dependent evolution
 Schwinger, J. Math. Phys 2, 407 (1961)
 Keldych, JETP 20, 1018 (1965)
- Effectively double the field content of the theory:

$$H_I(\Phi) \rightarrow H_I(\Phi^+) - H_I(\Phi^-)$$

For the Closed Time Contour

- Double the vertices:
 - use Φ^+ and Φ^- vertices
- Four propagators:

• Events on the + contour occur before those on the – contour

Divergences in the α -vacuum

- Loop propagator
- Power counting
- Phase interference
- Possible divergences in
 - two-propagator loops
 - three-propagator loops

$\int_{i=1}^{\Lambda} d^{3}\vec{p} \prod_{i=1}^{n} G_{\vec{p}-\vec{k}_{i}}^{\alpha}(\eta_{i},\eta_{i+1}) \approx \int_{i=1}^{\Lambda} \frac{dp}{p^{n-2}}$

n=2 linearly divergent

n=3 logarithmically divergent

α -Wightman function:

$$G_{\vec{p}-\vec{k}_{i}}^{>}(\eta_{i},\eta_{i+1}) = iN_{\alpha}^{2} \frac{\eta_{i}\eta_{i+1}}{2|\vec{p}-\vec{k}_{i}|} \left[e^{-i|\vec{p}-\vec{k}_{i}|(\eta_{i}-\eta_{i+1})} + e^{\alpha+\alpha*} e^{i|\vec{p}-\vec{k}_{i}|(\eta_{i}-\eta_{i+1})} - e^{\alpha*} e^{-i|\vec{p}-\vec{k}_{i}|(\eta_{i}+\eta_{i+1})} - e^{\alpha*} e^{-i|\vec{p}-\vec{k}_{i}|(\eta_{i}+\eta_{i+1})} \right]$$

Evolution of the number operator

• Example:

- the number of Euclidean particles in the α -vacuum
- in α -state at η_0
- Φ^3 interaction
- Evaluate to one-loop order

$$N_{\vec{k}}^{E}(\eta) = a_{\vec{k}}^{E\dagger}(\eta) a_{\vec{k}}^{E\dagger}(\eta)$$

$$\rightarrow \text{ induced by } H_{0}$$

$$\langle \alpha(\eta) \big| N_{\vec{k}}^{E}(\eta) \big| \alpha(\eta) \rangle = \text{to } \mathcal{O}(\lambda^{2})$$

Origin of the divergence

Define an 'initial occupation number'

$$\langle \alpha | a_{\vec{k}}^{E\dagger} a_{\vec{k}}^E | \alpha \rangle V^{-1} = N_{\alpha}^2 e^{\alpha + \alpha^*} \equiv n_{\vec{k}}^{\alpha}$$
 independent of k

• The α -dependent coefficient of the divergence is thus

$$\dot{N}_{\alpha,\vec{k}}^{E} = -\frac{\lambda^{2}}{k\eta} \frac{V}{64\pi^{3}} \frac{1}{k\eta_{0}} \int_{\eta_{0}}^{\eta} \frac{d\eta'}{\eta'} \int_{|\vec{p}-\vec{k}|}^{d^{3}\vec{p}} \frac{p^{2}dp}{p^{2}}$$

$$\times \left[(n_{k}^{\alpha} + 1)(n_{p}^{\alpha} + 1)n_{|p-k|}^{\alpha} - n_{k}^{\alpha}n_{p}^{\alpha}(n_{|p-k|}^{\alpha} + 1) \right]$$

$$\times \sin \left[(p+k-|\vec{p}-\vec{k})](\eta-\eta') \right] \qquad p\text{-independent}$$

$$+ \cdots$$
If this were a thermal system these n_{p}^{α} s would have a Boltzmann suppression at large p
However, an α -state is populated to arbitrarily high momenta

Taming the α -vacuum

What went wrong with the α -vacuum?

- Since the Euclidean vacuum matches with the flat vacuum, it is reasonable to define the usual time-ordering
- But is it the correct prescription for the α -vacuum?
 - antipodinal information
 - interference
- Can we generalize the idea of time-ordering
 - distinct from Euclidean case
 - has a good α → ∞ limit

$$\langle \alpha | T(\Phi(x)\Phi(x')) | \alpha \rangle$$

$$\stackrel{?}{=} \Theta(t-t') G_{\alpha}(x,x')$$

$$+ \Theta(t'-t) G_{\alpha}(x',x)$$

$$= N_{\alpha}^{2} [G_{E}(x,x') + e^{\alpha+\alpha^{*}} G_{E}(x',x) + e^{\alpha} G_{E}(x',x') + e^{\alpha^{*}} G_{E}(x',x')]$$

Propagation in the α -vacuum

• Define a new time-ordering for the α -vacuum to remove constructive interference in products of propagators

$$\lim A_{\alpha} \xrightarrow{\alpha \to E} 1$$

$$\lim B_{\alpha} \xrightarrow{\alpha \to E} 0$$

- Up to constants, we obtain an essentially unique form
 - contains two point sources
- Goldstein and Lowe, hep-th/0302050, hep-th/0308135
- Einhorn and Larsen, hep-th/0305056

Time ordering in the α -vacuum

- Note that the time-ordering operator acts on the fields
- To disentangle the inherent correlated behavior at the antipodes, T_{α} also depends on the antipodes

$$T_{\alpha}(\Phi(x)\Phi(x'))$$

$$= \Theta_{\alpha}(t,t')\Phi(x)\Phi(x')$$

$$+ [\Theta_{\alpha}(t',t)]^* \Phi(x')\Phi(x)$$

$$+ \Theta_{\alpha}^A(t_A,t')\Phi(x_A)\Phi(x')$$

$$+ [\Theta_{\alpha}^A(t',t_A)]^* \Phi(x')\Phi(x_A)$$

 It is useful to have a path integral definition for the field theory

$$\begin{split} \Theta_{\alpha}(t,t') &\equiv \frac{1}{1 - e^{2\alpha}} \Big[A_{\alpha} \Big[\Theta(t - t') + e^{2\alpha} \Theta(t' - t) \Big] \\ &- B_{\alpha} e^{\alpha} \Big[\Theta(t_A - t') + \Theta(t' - t_A) \Big] \Big] \end{split}$$

The path integral: free theory

 Since the propagator contains two sources, let us define the generating functional to have two currents:

$$\langle \alpha | T_{\alpha} (\Phi(x) \Phi(x')) | \alpha \rangle$$

$$= -iA_{\alpha} G_{E}^{F}(x, x') - iB_{\alpha} G_{E}^{F}(x_{A}, x')$$

$$= -iG_{\alpha}^{F}(x, x')$$

$$W_0^{\alpha}[J] = \int \mathcal{D}\Phi e^{i\int d^4x \sqrt{-g} \left[\mathcal{L}_0 + \left(a_{\alpha}J(x) + b_{\alpha}J(x_A) \right) \Phi(x) \right]}$$

- Fix a_{α} and b_{α} by differentiating with respect to the current
- Complete the square in W_0^{α}

$$\begin{aligned} \left[-i \frac{\delta}{\delta J(x)} \right] \left[-i \frac{\delta}{\delta J(x')} \right] W_0^{\alpha} [J] \Big|_{J=0} \\ &= \left\langle \alpha \middle| T_{\alpha} \left(\Phi(x) \Phi(x') \right) \middle| \alpha \right\rangle \\ A_{\alpha} &= a_{\alpha}^2 + b_{\alpha}^2 \qquad B_{\alpha} = 2a_{\alpha} b_{\alpha} \end{aligned}$$

The path integral: local interactions

$$W^{\alpha}[J] = \int \mathcal{D}\Phi e^{i\int d^4x \sqrt{-g} \left[\mathcal{L} + (a_{\alpha}J(x) + b_{\alpha}J(x_A))\Phi(x)\right]}$$
$$\mathcal{L}[\Phi(x)] = \mathcal{L}_0[\Phi(x)] + \mathcal{L}_I[\Phi(x)]$$

- Express W^{α} in terms of W_0^{α}
- Define a new functional derivative
- An *n*-point Green's function contains three types of propagators
 - Alpha (both external)
 - Mixed (one point external)
 - Euclidean (internal)

$$G_{\alpha}^{n}(x_{1},...,x_{n}) = \left[-i\frac{\delta}{\delta J(x_{1})}\right] \cdot \cdot \cdot \left[-i\frac{\delta}{\delta J(x_{n})}\right]$$

$$\times N e^{i\int d^{4}x \sqrt{-g} \,\mathcal{L}_{I}\left[-i\frac{\delta}{\delta J(x)}\right]} W_{0}^{\alpha}[J]$$

$$\left[-i\frac{\delta}{\delta J(x)}\right]\left[-i\frac{\delta}{\delta J(x')}\right]W_0^{\alpha}[J]\Big|_{J=0} = -iG_E^F(x,x')$$

the theory is renormalizable

Local interactions: renormalizability

$$W^{\alpha}[J] = \int \mathcal{D}\Phi e^{i\int d^4x \sqrt{-g} \left[\mathcal{L} + (a_{\alpha}J(x) + b_{\alpha}J(x_A))\Phi(x)\right]}$$
$$\mathcal{L}[\Phi(x)] = \frac{1}{2}\partial_{\mu}\Phi\partial^{\mu}\Phi - \frac{1}{2}m^2\Phi^2$$
$$-\rho\Phi - \frac{1}{2}\delta m^2\Phi^2 - \frac{1}{6}\lambda\Phi^3$$

- Only Euclidean-vacuum propagators appear in the loop
- The loop produces a logarithmic divergence which is cancelled by δm^2

$$G_{\text{mixed}}^{F}$$

$$G_{\text{mixed}$$

The path integral: antipodinal interactions

$$W^{\alpha}[J] = \int \mathcal{D}\Phi e^{i\int d^4x \sqrt{-g} \left[\mathcal{L} + (a_{\alpha}J(x) + b_{\alpha}J(x_A))\Phi(x)\right]}$$
$$\mathcal{L} = \mathcal{L}_0[\Phi(x)] + \mathcal{L}_I[a_{\alpha}\Phi(x) + b_{\alpha}\Phi(x_A)]$$

- Local interactions are renormalizable because only G_E^F appears in loops
- Was this necessary?
- Recall the original α vacuum
 - Euclidean
 - Double-source α
- Antipodinal interactions

$$G_{\alpha}^{n}(x_{1},...,x_{n}) = \left[-i\frac{\delta}{\delta J(x_{1})}\right] \cdot \cdot \cdot \left[-i\frac{\delta}{\delta J(x_{n})}\right]$$

$$\times N e^{i\int d^{4}x\sqrt{-g} \mathcal{L}_{I}\left[-i\frac{\delta}{\delta J(x)}\right]} W_{0}^{\alpha}[J]$$

$$\left[-i\frac{\delta}{\delta J(x)}\right]\left[-i\frac{\delta}{\delta J(x')}\right]W_0^{\alpha}[J]\Big|_{J=0} = -iG_{\alpha}^F(x,x')$$

Antipodinal interactions: renormalizability

$$W^{\alpha}[J] = \int \mathcal{D}\Phi e^{i\int d^4x \sqrt{-g} \left[\mathcal{L} + (a_{\alpha}J(x) + b_{\alpha}J(x_A))\Phi(x)\right]}$$

$$\mathcal{L} = \frac{1}{2}\partial_{\mu}\Phi\partial^{\mu}\Phi - \frac{1}{2}m^2\Phi^2 - \rho\left[a_{\alpha}\Phi(x) + b_{\alpha}\Phi(x_A)\right]$$

$$-\frac{1}{2}\delta m^2\left[a_{\alpha}\Phi(x) + b_{\alpha}\Phi(x_A)\right]^2 - \frac{1}{6}\lambda\left[a_{\alpha}\Phi(x) + b_{\alpha}\Phi(x_A)\right]^3$$

- Only α -vacuum propagators appear in diagrams
- This loop produces a logarithmic divergence too which is cancelled by δm^2

$$G_{\alpha}^{F} \qquad \delta m^{2} = \frac{\lambda^{2}}{16\pi^{2}} \frac{A_{\alpha}^{2}}{\varepsilon} + \frac{\delta m^{2}}{\delta m^{2}} = \text{finite}$$

Further tests

- Although the propagator contains a peculiar piece which depends on the antipode, the theory is
 - causal
 - renormalizable in the self-energy
- It is non-local, but in a very constrained form
 - global coordinates
 - inflationary patch
- Do pathologies appear elsewhere?
 - e.g. vertex corrections?

$$G_{\alpha}^{F}(x,x') = -\frac{iA_{\alpha}}{8\pi^{2}} \frac{1}{Z(x,x') - 1 - i\varepsilon} + \frac{iB_{\alpha}}{8\pi^{2}} \frac{1}{-Z(x_{A},x') + 1 - i\varepsilon}$$

Conclusions

- The α -vacuum
- The one loop corrections are linearly divergent for the α-vacuum
- These cannot be removed by a mass counterterm
- Euclidean vacuum loops can be renormalized
- two sources
- An α -vacuum with Our definition for the α -propagator is based on flat space intuition
 - Use renormalizability to guide us
 - Self-energy graphs are no longer linearly divergent
 - local and antipodinal interactions
- Loops and transplanckian physics
- Loop effects receive a Λ/H enhancement
 - the next talk will describe this result